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Numerical predictions of ship motions at high
forward speed

By O. FALTINSEN! AND R.ZHAO?

A

! Division of Marine Hydrodynamics, Norwegian Institute of Technology,

A Y
A
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< \L‘ N-7034 Trondheim-NTH, Norway

—_ EMARINTEK A/S, P.O. Box 4125, Valentinlyst, N-7002 Trondheim, Norway
S

O : A theory for ship motions at high forward speed is presented. The theory includes
e interaction between the steady and unsteady flow field. Numerical results for the
= Q) steady flow and added mass and damping are compared with experimental results.
L O

w

1. Introduction

Generally speaking strip theories are still the most successful theories for wave-
induced motions of ships at moderate forward speed. However, from a theoretical
point of view one can question strip theories. For instance, strip theories account for
the interaction with the forward speed in a simplistic way. The effect of the local
steady flow around the ship is neglected. Further the classical linear free surface
condition with forward speed is simplified so that the unsteady waves generated by
the body are propagating in directions perpendicular to the longitudinal axis of the
ship. If the complete classical linear unsteady free surface condition with forward
speed were used, a more complex wave system would have appeared.

Strip theories have no justification for high speed. Chapman (1975) has presented
a simplified high-speed theory for a vertical surface-piercing flat plate in unsteady
yaw and sway motion. In the main text we present a generalization of Chapman’s
method to analysis of any type of slender high-speed ship in waves. The steady flow
problem is nonlinear, while the unsteady flow is based on linear theory. Interaction
between the local steady flow and the unsteady flow is accounted for. In developing
the theory we have had in mind that it should be practical. This rules out a complete
three-dimensional theory.
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2. Theory

Consider a slender ship at high Froude number in incident regular waves on deep
water. A right-handed coordinate system (x,y,z) fixed with respect to the mean
oscillatory position of the ship is used, with positive z vertically upwards through the
centre of gravity of the ship and the origin in the plane of the undisturbed free
surface. The ship is assumed to have the zz plane as a plane of symmetry in its mean
oscillatory position. Let the translatory displacements in the z-, y- and z-directions
with respect to the origin be #,, 3, and 7,, respectively, so that %, is the surge, », is
the sway and 7, is the heave displacement. Furthermore, let the angular displacement
of the rotational motion about the x-, y- and z-axes be 7,, 75 and y,, respectively, so
that #, is the roll, 5, is the pitch and 7, is the yaw angle. The coordinate system and
the translatory and angular displacement conventions are shown in figure 1.
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Figure 1 T Figure 2
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Figure 1. Coordinate system and definitions of translatory and angular displacements of a ship.
Figure 2. Control surfaces used in the solution of the forced motion problem.

The problem can be formulated in terms of potential flow theory. The unsteady
motions of the ship and the fluid is assumed to be small so that we can linearize the
unsteady body boundary and free surface conditions. We assume that steady-state
conditions have been obtained and write the total velocity potential as

& = Uzx+ oy (x,y,2)+ ¢, ', (2.1)

where U is the forward speed of the ship, o is the frequency of encounter between the
waves and the ship, ¢ is the time variable and i the imaginary unit. It is understood
that real parts should be taken of the time-dependent part of equation (2.1).

The boundary value problem will be simplified by introducing the slenderness
parameter ¢. This expresses the order of magnitude of the ratio of the beam or
draught of the ship length. We assume that 0f/dx = O( fe3), offdy = O(fe ™),
df/0z = O( fe™') where f is any flow variable caused by the body in some region near
the ship. Further n, = O(e?) where n, is the x-component of a unit normal vector
n to the wetted part of the ship surface. Positive normal direction is into the fluid
domain. A motivation for choosing n, = O(e?) is that n, is often relatively large in the
bow and stern region and quite small along the midbody part. By setting n, = O(e?)
we imply that the bow and stern region is O(e?). By setting f/0x = O(fe™?) we are
allowing for variation of the flow in the z-direction over a length scale O(e?). The
reason why we have chosen 6! as a length scale and not any other value ¢ (0 < a < 1,
a # 1) is that ¢ leads to a meaningful set of equations and boundary conditions.
U or Froude number based on the ship length are assumed to be O(1).

Steady flow problem
It can be shown that the steady flow velocity potential ¢, must satisfy

0%, /0y? + 0*¢p./022 = 0 in the fluid domain, (2.2)
s _ 9, L [(0:) (065)° _ :
w O 2(][( ) T\%) | omE= ey, (2:3)

W U Uoyay O &@Y 24

The terms that we have neglected are O(e) relative to the terms that we have kept.
The fluid domain is defined to be outside and near the mean oscillatory position

Phil. Trans. R. Soc. Lond. A (1991) ) _
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Numerical predictions of ship motions 243

of the ship; { (x,y) means the steady free surface elevation. The following body
boundary condition applies
0¢p/ON = — Un,, (2.5)

where 0/0N means derivative along a unit vector N which is perpendicular to the
contour of the body in a cross-plane. Positive direction of N is into the fluid domain.
To solve equations (2.2) to (2.5) it is necessary to set starting conditions at the bow
x = xy. We set the velocity potential and free-surface elevation equal to zero at
x = xp, that is

¢,=0 and {, =0 at x=uxg. (2.6)

A solution can be found by starting at the bow, use equations (2.3) and (2.4) to step
the solution of the free surface elevation { and the velocity potential ¢, on z = ¢, in
the x-direction. For each cross section we can represent the velocity potential at a
point (y,z) as

_ o 9400
S Il R (XN T e XY

Here r = [(y—17)%+ (2— §)2J%, Sy the wetted body surface, Sy, the exact free surface,
ds a surface element along either Sy or Sy and 0/0N is the derivative along the
perpendicular to either Sy or Sy in the cross-plane. Positive normal direction is into
the fluid domain. Since there are no waves far away from the ship, the contribution
from the free-surface integral part of equation (2.7) can be rewritten. For |y| > b(x),
where b(x) is large relative to the cross-dimensions of the ship, we can write

Py, 2) ~ Az/(y* +27), (2.8)

where 4 is a constant depending on x. This means ¢, has a vertical dipole behaviour
far away from the ship. Unknowns in equation (2.7) are ¢, on the body surface and
0¢,/ON on the free surface. These are found by solving the integral equation that
arises when (y,z) approaches points on Sy and Sg.

From equation (2.5) we see that ¢, = ()(e%) and from equation (2.3) we find that the
steady wave elevation is the order of magnitude of the transverse dimensions of the
ship. This is the reason why we cannot linearize the free surface condition about
z=0.

In the derivation of the boundary value problem we have said that the Froude
number is order 1 and that d¢./0x = O(¢,e7%). We can get a feeling of what the
solution represents if we linearize the problem and represent the far-field flow created
in the bow by a source. Ogilvie (1977) has actually shown that the linear solution
represents the diverging waves caused by the ship. The effect of the transverse waves
are neglected. The solution is appropriate for the bow flow of any fine ship form at
any Froude number. The higher the Froude number is, the longer is the distance
along the ship where the solution is appropriate.

Forced motion problem

In the unsteady flow problem we concentrate on the forced motion problems.
There are no incident waves. That means we write

6
¢, el =3 D, (2.9)
j=2
Phil. Trans. R. Soc. Lond. A (1991) )
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where the effect of surge is higher order. It can be shown that @; must satisfy

0*®,/0y* +0°P;/02* = 0 in the fluid domain, (2.10)
0, _ vy & ¢y | 0ps 0, %azsﬁs]
o U¢j U[ +Uazax+ dy az6y+ 0z 02°

_1[0g00, 0,00,
Uldy dy 0z 0z

o &l . P PP 3L
e Ul 7T 5 Tog0z oy

] onz={J(x,y), (2.11)

LO®; 1[0E09; 3¢, 0E
Ud U

@ o + B Oy] onz=_{(r,y). (2.12)
The terms involving second derivatives of ¢, are obtained by a Taylor expansion
about z = { (x, y). This requires certain regularity conditions which may not always
be satisfied at the intersection between the free surface and the body surface. This
may represent problems if the ship is not vertically wall-sided at the free surface.

The fluid domain is defined to be outside and near the mean oscillatory position of
the ship, {;7; means the unsteady free surface elevation relative to the steady free
surface elevation {;. We have not yet said anything about the order of magnitude of
w. For the terms involving w in equations (2.11) and (2.12) to be of equal importance
with the rest of the terms, it is necessary that w = 0. If w = o(e"%), we can still
keep the w-terms as long as we only claim that we solve the problem to the order of
magnitude of the terms that do not involve w. The terms that we have neglected in
equations (2.10) to (2.12) are O(e) relative to terms that we have kept. The following
body boundary condition applies

OP,/0N = iwn, +m, (2.13)

on the mean oscillatory position of the ship. The components n; and m, are defined
by
(1, My, Mg) = M, (g, N5, 1g) = (Yng—2my, — TNy, TN,),

0 O 0 0¢y g Gl
my = Ny’ mg = Nz my = o Ny 2 Ny + YMg — 2My, (2.14)

my = —Ung—am,, mg = Uny+xm,.

The term proportional to U in m, and mg is O(e?) relative to the other term in My or
mg. The terms involving second derivatives of ¢ are obtained by a Taylor expansion
about the mean oscillatory position of the body surface. This may represent
problems at sharp corners on the body surface and at the intersection between the
free surface and the body surface.

We note there are interactions with the local steady flow both in the body
boundary and free surface conditions. In the body boundary conditions the
interaction terms occur because the steady flow satisfy the body boundary conditions
on the mean oscillatory position and not the instantaneous position of the ship. If the

Phil. Trans. R. Soc. Lond. A (1991)
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interaction with ¢ is neglected in the free surface conditions, we obtain the classical
free surface condition applicable to, for instance, a harmonically oscillatory source
with mean forward speed. Sometimes the classical free surface condition is combined
with the presence of ¢, in the m,-terms of the body boundary condition. Our analysis
shows that the ¢,-terms should be kept both in the body boundary and free surface
conditions.

To solve equations (2.11) to (2.13) it is necessary with starting conditions at the
bow. This is done similarly as in the steady flow problem (see equation (2.6)).

A solution can be found by starting at the bow and use equations (2.11) and (2.12)
to step the solution of the unsteady free surface position {; and velocity potential &,
on z = { in the x-direction. For each cross section we represent the velocity potential
in somewhat different form than in the steady flow problem. The reason for doing
this is to avoid evaluating the second derivatives of ¢, in the body boundary
conditions. This causes numerical problems in particular near sharp corners.

We will introduce particular solutions @; that satisfy two-dimensional Laplace
equation in cross-planes of the ship and the terms involving ¢, in the body boundary
conditions for @;. We can write

¢p2 = —a¢s/ay, ¢p3 = -agbs/az’ ¢p4 = -ya¢s/az+za¢s/ay’1

(2.15)
@, = wd [0z, Ppy=—adp/y. J
From Green’s second identity we can write
0D, 0

2 . == .___l — .
nd,(y, z) JSB+SF (lnr N D, aNln r) ds(n, §), (2.16)
2nCD,,(y,2) = lnrggp— D g —Inr|ds(n, §), (2.17)

B s U N MaN o ‘

where r = [(y—n)2+(z—§)2]%. C =1 when (y,?2) is inside Sz+8S, and equal to zero
when (y, 2) is outside Sy +8S,. Sg, Sy and ds is defined in connection with equation
(2.7). 8, is illustrated in figure 2 and is selected so that Sz + S, encloses a fluid volume.
Otherwise we are free how to select S,. From a computational point of view it is
important that S, does not contain parts with a high curvature. The procedure does
not solve possible numerical problems with second derivatives of ¢, at the inter-
section between the free surface and the body surface. By subtracting equations
(2.16) and (2.17) we can write

2n(¢j—0q§pj)=fs [lnr%(@—d? )—(D;— P )a?vlnr]ds
B

d d d d |
+J [lnraN¢ <D]aN1nr:|ds f[lnraN p]aNlnr]ds (2.18)

In the integral over Sy we can write (0/ON)(®;—®D,;) = iwn;+M;, where M; =0,
(j=2,4), My = —Uny, Mg = Un,. What we have obtained by writing the solution in
the form of equation (2.18) is that it is unnecessary to evaluate second derivatives of
¢, on Sg. Instead we have to evaluate them along S,, where we do not have the
same numerical difficulties as along Sy except at the intersection between the hull
surface and the free surface.

Phil. Trans. R. Soc. Lond. A (1991) )
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The integration along Sy in equation (2.18) can be simplified in the same way as
in the steady flow problem. When |y| > b,(x) we can write

(Ajz/(y2+z2), j=3,5, 1
T\ Ay (24222, j=2.4,6.

Unknowns in equation (2.18) are @;— @, on the body surface and 0®,/dN on the free
surface. They are found by setting up an integral equation in the same way as in the
steady flow problem.

If the hull ends in a trailing edge, we assume in the sway, roll and yaw problems
that there is a vortex sheet leaving from the trailing edge in the downstream
direction. This means we consider the ship to be a low-aspect-ratio lifting surface.
The upstream effect of the vortex sheet is negligible.

If we neglect the effect of ¢ in the problem, it can be shown that the solution
accounts for the unsteady diverging waves only (Faltinsen 1983). In the heave and
pitch problem there are unsteady transverse wave systems that are neglected. This
is appropriate for high Froude numbers. Since there are no upstream effects in the
solution, it is necessary that 7 = wU/g > 1.

(2.19)

Added mass, damping and restoring coefficients

The added mass, damping and restoring coefficients in the equations of motions for
the ship oscillations can be found by starting out with Bernoulli’s equation for the
pressure and neglecting higher-order terms. We can write the pressure as

. a < a < 2 a s 2
p=—pgz—pU ai —%p[( af/) +< gi) ]—pg(773+y774—x775)

_ O 080y 0Oy 0P 7%%s
pZ[l(ud) +UH +©y OJ % 02 ,oUa 75+ a N, (2.20)

where 1, = @;—®,;. The three first terms are steady. All terms should be evaluated
at the mean oscillatory position of the ship. In the last terms we should note the
presence of the yr;-terms. They are a combined effect of the unsteady @;-potential
and an effect of that the ship oscillates in its local steady flow. The last effect is
common to neglect in ship motion theories. Keuning (1988) defined the latter effect
by restoring coefficients in his experimental studies of heave added mass and
damping of a high-speed ship. He obtained the terms by displacing the ship vertically
both upwards and downwards relative to the reference position. By measuring the
vertical steady force at each position, he derived a heave restoring coefficient. Both
the heave velocity and acceleration were zero during these experiments. This
corresponds to setting @ = 0 in our analysis. However, when we do the calculations
for finite w-value, the interaction with the local steady flow is not the same as for
w=0.
The force and moments on the ship can be written as

F, =—f pn,ds (k=1,...,6),
Ss

where F = (F,, F,, F,) is the force and M = (F,, F, F;) is the moment acting on the
ship. S is the wetted body surface. This includes the steady wave elevation along the
ship. In the case of no motions F is the wave resistance of the ship. F, and Fj can be

Phil. Trans. R. Soc. Lond. A (1991) )
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Numerical predictions of ship motions 247

used to find the steady ‘sinkage’ and trim of the ship. We concentrate on the linear
unsteady forces. The contribution from the fourth term in equation (2.20) can be
evaluated by Gauss theorem. The resulting force and moment components will be
expressed by restoring terms —C,;7;. By adding the effect of the mass of the ship,
we can write

Cy3 = pgiyp, Cg5 = Cs3 = _ng

Ayp

xds, 055=pgj x?ds,
Awp
(2.21)

Op = ng y* ds+pgVzp—Mgzg.
wp

The other U}, -terms are zero. Here 4, is the water plane area of the ship defined by
the steady wave elevation along the ship (local spray is disregarded). V is the
submerged volume of the ship relative to the steady wave elevation, zy is the z-
coordinate of the centre of buoyancy of V, M is the mass of the ship, ¢ is acceleration
of gravity and z; is the z-coordinate of the centre of gravity of ship. We should note
that 4, V and 2 have different meaning in conventional ship motion theories. 4,
is for instance the water plane area in calm water.

The contribution from the last terms in equation (2.20) is written in the form of
added mass (4,;) and damping coefficients (By;). There is an ambiguity in what we
define as restoring and added mass coefficients. Any restoring coefficient can be
written as an added mass coefficient and vice versa. In the definition of added mass
it is important to know what we define as restoring coefficient. We can write

p

A,; = Re (T};)/w?, By =—Im (1), (2.22)
_ ; %, 9, | 06,
where T = pfank [1w¢j+U P + o + % o + Gy (2.23)

G is zero except for

Gk5=pUJ %nkds (k= 3,5),
sy 0%

Gm;:—PUJ %nkds (k=2,4,6).
Sp dy

3. Numerical solution and validation

In the numerical solution based on equations (2.7) and (2.18) the control surfaces
are divided into a number of segments, and the velocity potentials and their normal
derivatives are set constant over each segments. Only segments for |y| < b(x) (or b;(x))
are used on the free surface. The integral equations resulting from (2.7) and (2.18) are
satisfied on the midpoint of each element.

The expressions for the velocity potential and free surface elevations on the free
surface was obtained by equations (2.3), (2.4), (2.11) and (2.12). This was done by a
second-order Runge-Kutta method. Numerical results have been compared with the
results given by Faltinsen (1983) for linear bow flows and transient motion problems.
Good agreement was documented.

We have also tested our numerical results against Tuck’s (1988) numerical results

Phil. Trans. R. Soc. Lond. A (1991) )
[ 61 ]


http://rsta.royalsocietypublishing.org/

/,//’ \\
o \
( 2\

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
/%

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

248 0. Faltinsen and R. Zhao

Figure 3 Figure 4
003 |,

Figure 3. Body plan of the model used in Keuning’s experiments (1988).

Figure 4. Measured and computed wave profile along the length of the model presented in figure
3 and table 1. , Experiments, Keuning (1988); —a—, nonlinear theory ; —o—, linear theory.
¢ is the wave elevation, L is the ship length, X is the longitudinal coordinate, X = —1L at the bow.
Fn =1.14. Trim is 1.62°.

Table 1. Main particulars of the model used in Keuning’s experiments (1988)

length of test waterline 2.00 m draft 0.0624 m
beam of test waterline 0.25 m block coefficient 0.396

of a wave resistance of a parabolic strut. Tuck used both Michell integral and what
he calls a strip theory. In the strip theory he linearizes the free-surface conditions and
satisfies the body boundary condition on the centre plane of the ship. Otherwise the
boundary value problem is similar as in our approach. We find good agreement with
Tuck’s strip theory when we linearize the free-surface conditions. There is good
agreement with the more exact Michell integral at high Froude number (greater than
ca. 0.5). However, for small Froude numbers the disagreement is large. A reason is
that we neglect the effect of the transverse wave systems.

Our numerical results were also compared with the numerical and experimental
results presented by Chapman (1975) for a flat plate oscillating in sway and moving
with forward speed. In this case the steady velocity potential ¢, is zero and our
theory is identical to Chapman’s theory. We found good agreement with Chapman’s
result. Chapman shows satisfactory results relative to model tests for Froude
numbers as low as 0.16. One reason is probably that neglection of the transverse
wave systems does not influence the sway-problem. Chapman also used the strip
theory by Salvesen et al. (1970). The results by strip theory were unsatisfactory for
the higher Froude numbers. The highest Froude number was 0.96.

Keuning (1988) studied experimentally the distribution of added mass and
damping in heave along a high speed displacement hull. The body plan of the model
is shown in figure 3. The main parameters of the ship model are given in table 1.
Froude numbers 0.57 and 1.14 were examined. Since the ship hull is not vertically
wall-sided at the free surface, it represents a difficult validation test of our numerical

Phil. Trans. R. Soc. Lond. A (1991) ]
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0.02 -

10F, [pgL’®
(=]
X
=
T

—002 | , |
=05 0 05
X/L k—asymptotic value

Figure 5. Measured and computed steady vertical force distribution along the model presented in
figure 3 and table 1. , Experiments, Keuning (1988); —a—, nonlinear theory; —n—, linear
theory ; Fy is the vertical force per unit length. (Buoyancy force in calm water excluded), L is the
ship length, X is the longitudinal coordinate, X = —1L at the bow, p is the mass density of water.
Fn = 1.14. Trim is 1.62°.

code. In figure 4 is shown a comparison between the measured and computed wave
profile along the ship in the steady flow problem at Fn = 1.14. According to Keuning
the experimental values represents the local solid waterline without the influence of
the spray. We have also presented numerical predictions based on a linearized
version of our theory. In the linear theory we satisfy the free surface conditions (2.3)
and (2.4) at z = 0 and neglect nonlinear terms in ¢, and {,. We note the measured
maximum wave elevation is about 70 % of the draught, i.e. the order of magnitude
of the transverse dimensions of the ship. This is consistent with our theoretical
assumptions. The nonlinear theory predicts very well the maximum wave elevation
Nmax While the linear theory underpredicts #,,.. At the bow of the ship the
experiments show a finite value of the wave elevation while the theory starts with
zero amplitude. Also at the stern there is differences between theory and experiments.

Figure 5 shows the steady vertical force per unit length along the ship in the same
steady flow condition as in figure 4. The ship was divided into seven segments. The
experimental values are averaged values per unit length over segments. The
hydrostatic force due to the pressure term ‘—pgz’ on the body surface z < 0 is not
included (see equation (2.20)). The agreement between theory and experiments is
good except in the aft part of the ship. The nonlinear theory agrees better than the
linear theory. We expect that the flow leaves the transom stern tangentially in the
downstream direction so that there is atmospheric pressure at the last section. This
means the vertical force per unit length on the stern of the ship is opposite to the
vertical force due to the pressure term ‘—pgz’. This asymptotic value is shown in
the figure. Our theory is not able to predict this value.

Figure 6 shows the heave added mass distribution along the ship for the non-
dimensionalized frequencies w+/(L/g) = 2.26, 4.97 and 6.77. The Froude number is
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Figure 6. Heave added mass and damping distribution along the model presented in figure 3.2nd
table 1. (i) wv/(L/g) = 2.26; (i) wv/(L/g) =4.97; (iii) wv/(L/g) = 6.77. ——, Experiments,
Keuning (1988); —a——, ‘nonlinear’ theory; —go—, linear theory; — x—, strip theory version
1; —o—, strip theory version 2; a,, is the heave added mass per unit length, by, is the heave
damping per unit length, w is the circular frequency of oscillation, L is the ship length, X is the
longitudinal coordinate, X = —3iL at the bow, p is the mass density of water, g is the acceleration

of gravity. Fn = 1.14. Trim is 1.62°. AV is asymptotic value.

Phil. Trans. R. Soc. Lond. A (1991)
[ 64 ]


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

PHILOSOPHICAL
TRANSACTIONS
OF

. \

A \

/an \

‘A
y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Numerical predictions of ship motions 251

1.14. The restoring coefficients are in this context defined as hydrostatic restoring
coefficients in calm water, i.e. the effect of the steady wave elevation is not included
in the restoring coefficients. The experimental values are presented as average values
per unit length over the segments. The agreement between theory and experiments
is quite good except for the third segment from the bow. The experiments show a
very strong variation in added mass from segment 2 to 3. The difference between
theory and experiments is more pronounced the lower the frequency is. The reason
is probably stronger influence from the local steady flow than we predict.

An important part of the interaction with the local steady flow is through the m;-
terms in the body boundary conditions. These terms get very high values at the
intersection between the free surface and the ship hull in the forward part of the ship.
The reason is that the ship hull is not vertically wall-sided there and the second
derivatives of ¢, become large. This indicates a singular behaviour of the m,-term at
the intersection between the free surface and the hull surface. This is likely to cause
numerical errors in our predictions. The m,-terms have larger influence the smaller the
frequency is.

At the last section we have presented an asymptotic value. This is based on that
the sum of the vertical dynamic force in phase with the heave displacement and the
acceleration should be zero. This means the sum of what we call added mass force per
unit length and restoring force per unit length should go to zero at the last section.
The ‘nonlinear’ theory is able to predict the occurrence of negative added mass in the
bow region. In general the ‘nonlinear’ theory shows better agreement than linear
theory and strip theory. By ‘nonlinear’ theory we mean that the steady flow has
been calculated by nonlinear theory. By linear theory we mean that we neglect all
interaction terms with the steady flow problem. There are shown results from two
strip theories in figure 6. Version 1 is the ordinary strip method, while version 2 is
similar to the Salvesen—Tuck—Faltinsen method (1970). The strip theory calculations
were done by Keuning (1988).

Figure 6 also shows the heave damping distribution along the ship. The ‘nonlinear’
theory agrees best with the experiments. The agreement is good except for the aft
end of the ship. Our theory is not able to predict that the heave damping coefficient
per unit length should be zero at the last section.

4. Conclusions

A simplified theory for ship motions at high forward speed is presented. The effect
of the local steady flow is included in the body boundary conditions, free surface
conditions and the pressure calculations. The local steady flow is solved by a
nonlinear theory. Partly satisfactory agreement with experimental results for steady
wave elevation, vertical steady force distribution and heave added mass and
damping is presented. However, it is pointed out that numerical problems occur due
to'the high values of the m,-terms at the intersection between the free surface and the
hull surface. The reason is that the hull surface is not vertically wall-sided at the free
surface. This requires further studies.
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Discussion
N. Umepa (National Research Institute of Fisheries Engineering, Japan). For a ship
with a transom stern, the slender-body assumption fails at the aft end of the ship.
However, when we consider a void space after the transom, this assumption may be
still valid. Thus Professor Faltinsen’s theory involuntarily deals with the slender
body consisting of both the ship and the void space for vertical motions. For lateral

motions, it may deal with a slender body consisting of both the ship and vortex
sheets.

O. FavTinseN. I do not think it is straightforward to modify our analysis and deal
with the transom stern in the way that Professor Umeda suggests. According to our
theory the hydrodynamic behaviour at a cross section of the ship is independent of
the downstream flow. However, what is physically happening at the transom stern
will depend on the downstream flow. At the last section there will be atmospheric
pressure. This is due to the void space after the transom stern. This will not be
predicted by our analysis. I agree about the lateral motions when the hull ends in a
trailing edge. The upstream effect of the trailing vortex sheet can be neglected. What
is important is to account for the velocity jump across the vortex sheet at the trailing
edge. It is believed that this can be predicted by our method.
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